p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.185C23, D4⋊C8⋊11C2, C4⋊D8⋊3C2, C8⋊5D4⋊13C2, C4⋊C4.290D4, (C2×D4).44D4, C4⋊C8.2C22, (C2×Q8).23D4, C4⋊Q8.7C22, C4.52(C4○D8), C4.6Q16⋊2C2, C4.32(C8⋊C22), (C4×C8).242C22, (C4×D4).20C22, C4⋊1D4.9C22, C2.15(D4⋊D4), C2.17(D4⋊4D4), C22.151C22≀C2, C22.49C24⋊1C2, (C2×C4).942(C2×D4), SmallGroup(128,356)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.185C23
G = < a,b,c,d,e | a4=b4=c2=1, d2=a2, e2=a2b2, ab=ba, cac=dad-1=a-1, eae-1=ab2, cbc=dbd-1=ebe-1=b-1, dcd-1=ac, ece-1=bc, de=ed >
Subgroups: 328 in 120 conjugacy classes, 34 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, D4⋊C4, C4⋊C8, C42⋊C2, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C2×D8, C2×SD16, D4⋊C8, C4.6Q16, C4⋊D8, C8⋊5D4, C22.49C24, C42.185C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8⋊C22, D4⋊D4, D4⋊4D4, C42.185C23
Character table of C42.185C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | -2 | 2 | 2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√2 | 0 | 0 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √2 | 0 | 0 | -√2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | √2 | -√2 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | √2 | -√2 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√2 | 0 | 0 | √2 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | -√2 | √2 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √2 | 0 | 0 | -√2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | -√2 | √2 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 15 5)(2 19 16 6)(3 20 13 7)(4 17 14 8)(9 62 56 59)(10 63 53 60)(11 64 54 57)(12 61 55 58)(21 31 33 26)(22 32 34 27)(23 29 35 28)(24 30 36 25)(37 48 49 44)(38 45 50 41)(39 46 51 42)(40 47 52 43)
(2 4)(5 18)(6 17)(7 20)(8 19)(9 61)(10 64)(11 63)(12 62)(14 16)(21 26)(22 25)(23 28)(24 27)(29 35)(30 34)(31 33)(32 36)(37 52)(38 51)(39 50)(40 49)(41 42)(43 44)(45 46)(47 48)(53 57)(54 60)(55 59)(56 58)
(1 43 3 41)(2 42 4 44)(5 40 7 38)(6 39 8 37)(9 36 11 34)(10 35 12 33)(13 45 15 47)(14 48 16 46)(17 49 19 51)(18 52 20 50)(21 53 23 55)(22 56 24 54)(25 57 27 59)(26 60 28 58)(29 61 31 63)(30 64 32 62)
(1 28 13 31)(2 30 14 27)(3 26 15 29)(4 32 16 25)(5 23 20 33)(6 36 17 22)(7 21 18 35)(8 34 19 24)(9 51 54 37)(10 40 55 50)(11 49 56 39)(12 38 53 52)(41 60 47 61)(42 64 48 59)(43 58 45 63)(44 62 46 57)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,48,49,44)(38,45,50,41)(39,46,51,42)(40,47,52,43), (2,4)(5,18)(6,17)(7,20)(8,19)(9,61)(10,64)(11,63)(12,62)(14,16)(21,26)(22,25)(23,28)(24,27)(29,35)(30,34)(31,33)(32,36)(37,52)(38,51)(39,50)(40,49)(41,42)(43,44)(45,46)(47,48)(53,57)(54,60)(55,59)(56,58), (1,43,3,41)(2,42,4,44)(5,40,7,38)(6,39,8,37)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (1,28,13,31)(2,30,14,27)(3,26,15,29)(4,32,16,25)(5,23,20,33)(6,36,17,22)(7,21,18,35)(8,34,19,24)(9,51,54,37)(10,40,55,50)(11,49,56,39)(12,38,53,52)(41,60,47,61)(42,64,48,59)(43,58,45,63)(44,62,46,57)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,48,49,44)(38,45,50,41)(39,46,51,42)(40,47,52,43), (2,4)(5,18)(6,17)(7,20)(8,19)(9,61)(10,64)(11,63)(12,62)(14,16)(21,26)(22,25)(23,28)(24,27)(29,35)(30,34)(31,33)(32,36)(37,52)(38,51)(39,50)(40,49)(41,42)(43,44)(45,46)(47,48)(53,57)(54,60)(55,59)(56,58), (1,43,3,41)(2,42,4,44)(5,40,7,38)(6,39,8,37)(9,36,11,34)(10,35,12,33)(13,45,15,47)(14,48,16,46)(17,49,19,51)(18,52,20,50)(21,53,23,55)(22,56,24,54)(25,57,27,59)(26,60,28,58)(29,61,31,63)(30,64,32,62), (1,28,13,31)(2,30,14,27)(3,26,15,29)(4,32,16,25)(5,23,20,33)(6,36,17,22)(7,21,18,35)(8,34,19,24)(9,51,54,37)(10,40,55,50)(11,49,56,39)(12,38,53,52)(41,60,47,61)(42,64,48,59)(43,58,45,63)(44,62,46,57) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,15,5),(2,19,16,6),(3,20,13,7),(4,17,14,8),(9,62,56,59),(10,63,53,60),(11,64,54,57),(12,61,55,58),(21,31,33,26),(22,32,34,27),(23,29,35,28),(24,30,36,25),(37,48,49,44),(38,45,50,41),(39,46,51,42),(40,47,52,43)], [(2,4),(5,18),(6,17),(7,20),(8,19),(9,61),(10,64),(11,63),(12,62),(14,16),(21,26),(22,25),(23,28),(24,27),(29,35),(30,34),(31,33),(32,36),(37,52),(38,51),(39,50),(40,49),(41,42),(43,44),(45,46),(47,48),(53,57),(54,60),(55,59),(56,58)], [(1,43,3,41),(2,42,4,44),(5,40,7,38),(6,39,8,37),(9,36,11,34),(10,35,12,33),(13,45,15,47),(14,48,16,46),(17,49,19,51),(18,52,20,50),(21,53,23,55),(22,56,24,54),(25,57,27,59),(26,60,28,58),(29,61,31,63),(30,64,32,62)], [(1,28,13,31),(2,30,14,27),(3,26,15,29),(4,32,16,25),(5,23,20,33),(6,36,17,22),(7,21,18,35),(8,34,19,24),(9,51,54,37),(10,40,55,50),(11,49,56,39),(12,38,53,52),(41,60,47,61),(42,64,48,59),(43,58,45,63),(44,62,46,57)]])
Matrix representation of C42.185C23 ►in GL4(𝔽17) generated by
16 | 2 | 0 | 0 |
16 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
0 | 10 | 0 | 0 |
5 | 0 | 0 | 0 |
0 | 0 | 5 | 5 |
0 | 0 | 5 | 12 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 3 | 3 |
0 | 0 | 3 | 14 |
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[1,1,0,0,0,16,0,0,0,0,16,0,0,0,0,1],[0,5,0,0,10,0,0,0,0,0,5,5,0,0,5,12],[4,0,0,0,0,4,0,0,0,0,3,3,0,0,3,14] >;
C42.185C23 in GAP, Magma, Sage, TeX
C_4^2._{185}C_2^3
% in TeX
G:=Group("C4^2.185C2^3");
// GroupNames label
G:=SmallGroup(128,356);
// by ID
G=gap.SmallGroup(128,356);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,232,422,520,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=a^2,e^2=a^2*b^2,a*b=b*a,c*a*c=d*a*d^-1=a^-1,e*a*e^-1=a*b^2,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations
Export